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Lecture T3

 

Combined Mass and Energy Transients

 

We now consider processes in which the amounts of both mass and
energy are changing in the system.  In these cases, the material and energy
balances are both differential equations, and it is not unusual for the com-
plete mathematical description of the process to become quite complicated.
In this lecture we restrict attention to relatively simple situations in which
the material and energy balances decouple, so the material balance can be
solved, independently of the energy balance.  Then, the solution to the mate-
rial balance is used in solving the energy balance.  The few simple problems
presented here will not make you an expert at solving transient problems,
but they should serve to introduce you to the kinds of difficulties that can
arise and how one addresses them.

 

T3.1   An Example with One Input and No Outputs

 

 A 100-gal, enclosed, well-insulated, cylindrical tank initially holds 50-
gal of water at 20

 

°

 

C.  At the top of the tank is a small vent line, open to the
atmosphere; see Figure T3.1.  Near the bottom of the tank, a valved line is
available to admit low-pressure steam to the tank.  The steam is saturated at
3 bar.  The objective is to heat the water to 70

 

°

 

C.  The process starts when the
valve in the steam line is opened, allowing steam to flow into the tank at a
constant rate of 1 kg/min.  The computational problems are to (a) determine
the time required for the contents of the tank to reach 70

 

°

 

C and (b) deter-
mine the total mass of water in the tank when it reaches 70

 

°

 

C.
Let 

 

M

 

 be the total mass of water in the tank at any time 

 

t

 

 and let 

 

m

 

i

 

 be the
flow rate of steam into the tank.  Then the general material balance (T1.1) is

(T3.1)dM
dt

--------- mi=
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Since the feed rate 

 

m

 

i

 

 = 1 kg/min is constant, (T3.1) can immediately be inte-
grated to obtain the mass at any time 

 

t

 

, 

(T3.2)

where 

 

M

 

o

 

 is the initial mass of water in the tank.  At 20

 

°

 

C, 50 gallons of
water corresponds to 

 

M

 

o

 

 = 189.6 kg.  
The general energy balance (T2.3) for this situation simplifies to

(T3.3)

where 

 

u

 

 is the intensive internal energy of water in the tank, 

 

h

 

i

 

 is the inten-
sive enthalpy of the steam, and 

 

dW

 

b

 

 = –

 

P

 

d(

 

Mv

 

) is the boundary work done
by the surface of the water compressing the vapor above it.  Because of the
vent, the pressure is constant on that surface; however, the lost of vapor to
the surroundings is negligible, so we combine the 

 

PdV

 

 term with the inter-
nal energy.  Then the lhs can be expressed in terms of the intensive enthalpy
(

 

h

 

) for water in the tank,

(T3.4)

The principal error is writing (T3.3) and (T3.4) occurs from neglect of the
change in boundary energy (

 

∆

 

E

 

b

 

); that is, some enthalpy from the steam will
be used to increase the temperature of the tank walls rather than increase
the temperature of the water.

Our computational strategy is to solve the differential equation (T3.4)
with the help of the material balance (T3.1) and (T3.2).  We begin by expand-
ing the lhs of (T3.4),

steam

vent

Figure T3.1 Schematic of an
insulated tank having a single
input for steam and no outputs.
The losses through the vent are
negligible over the time scale of
interest.
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(T3.5)

The two terms on the lhs mean that there are two contributions to the
increase in enthalpy of the tank: changes in the thermodynamic state (

 

dh

 

/

 

dt

 

)
and changes in the amount of material (

 

dM

 

/

 

dt

 

).  We now use (T3.1) to elimi-
nate 

 

dM

 

/

 

dt

 

 and collect terms,

(T3.6)

For the time dependence of 

 

M

 

(

 

t

 

), we substitute (T3.2),

(T3.7)

This can be solved by separating variables,

(T3.8)

Let 

 

h

 

o

 

 be the intensive enthalpy of the water in the tank at 

 

t

 

 = 0, when
steam is first admitted.  Then integrating (T3.8) yields

(T3.9)

or

(T3.10)

This can be solved explicitly for 

 

h

 

 at any 

 

t

 

 or for 

 

t

 

 at any 

 

h

 

; we choose the lat-
ter; hence,

(T3.11)

M dh
dt
------ h dM

dt
---------+ mihi=

M
td

dh mi hi h–( )=

Mo mit+( )
td

dh mi hi h–( )=

dh
hi h–( )

------------------
midt
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hi ho–
----------------

 
 
 

ln–
Mo mi⁄ t+

Mo mi⁄
---------------------------

 
 
 

ln=

hi ho–

hi h–
---------------- 1

mit

Mo
--------+=

t
Mo
mi
--------

h ho–

hi h–
--------------

 
 
 

=



Combined Mass and Energy Transients — �� —

Copyright © 2001 by J. M. Haile.  All rights reserved.  http://www.macatea.com/workshop/

Note that the elapsed time t is linear in the initial loading Mo, so if Mo is
doubled, then it takes twice as long to reach the same final temperature.
Further, t varies inversely with the steam feed rate min, so if we double the
steam flow rate, then we halve the time needed to reach the same final tem-
perature.

Steam tables give ho = 84 kJ/kg for water at 20°C, hi = 2725 kJ/kg for sat-
urated steam at 3 bar, and h = 293 kJ/kg for water at the desired T = 70°C.
Thus, (T3.11) becomes

(T3.12)

The steam must flow for 16.3 minutes to bring the contents of the tank to
70°C.  At that point, the material balance (T3.2) gives

(T3.13)

as the total amount of water in the tank.  The complete heating curve for this
situation is shown in Figure T3.2.

t
189.6 kg

1 kg/min
------------------------- 293 84–

2725 293–
--------------------------- 

  16.3 min= =

M 189.6 kg 1 kg/min( )16.3 min+ 206 kg= =

0
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Figure T3.2 Heating curve for water in the tank shown in Figure T3.1.
Curve computed from (T3.11) with enthalpies of saturated liquids from
steam tables.  After 16.3 min of flow, the water reaches 70°C.  After 27.5
min, it reaches the normal boiling point; at that time, the tank holds 60
gallons of liquid water.  



— �� — Lecture T3

Copyright © 2001 by J. M. Haile.  All rights reserved.  http://www.macatea.com/workshop/

T3.2   An Example with Two Inputs and One Output

We now consider a more complicated version of the heating problem
presented in the previous section.  We again have a 100-gal, well-insulated,
vented, cylindrical tank, initially holding 50 gallons of water.  At the top of
this tank, a line feeds water into the tank at a constant rate of 8 gal/min.
From the bottom of the tank, a pump removes water at 8 gal/min; see Fig-
ure T3.3.  Low-pressure steam (saturated at 3 bar) can be admitted into the
tank, but initially the steam supply valve is closed, so the flow through the
tank is initially a steady state.  The feed water and tank contents are initially
at 20°C.

The tank contents need to be heated so that water leaves the tank at
70°C.  To achieve this, we will open the steam supply valve, allow steam to
heat the tank contents to 70°C, then adjust the steam supply and outlet flow
valves to a new steady state.  These questions to be resolved are these:

(a) What mass flow rate of steam, ms, is required to maintain the new
steady state at 70°C?

(b) What value of ms will we use during the transient that heats the
water from 20°C to 70°C?

(c) How long will the transient heating last?

(d) When the new steady state is reached, what will be the total
amount of water in the tank?

T3.2.1 Steady-State Solution

We take the entire contents of the tank as the system.  When the new
steady state is reached, the rate of water pumped from the tank, mso, will be
balanced by the mass flows of water, mc, and steam, ms, into the tank,

steam

vent

water m, h

ms, hs

water
mc, hc

Figure T3.3 Schematic of an
insulated tank provided with
two inputs (water and steam)
and one output (water).
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(T3.14)

The steady-state process is adiabatic, workfree, with negligible changes in
kinetic and potential energies, so the steady-state energy balance reduces to

(T3.15)
or

(T3.16)

Using the material balance (T3.14) to eliminate mso from the energy balance
(T3.16), we can write

(T3.17)

The constant feed rate of 8 gal/min corresponds to mc = 30.3 kg/min.
Steam tables give hc = 84 kJ/kg, hs = 2725 kJ/kg, and hso = 293 kJ/kg for
water at 70°C.  Then (T3.17) becomes

(T3.18)

This is the feed rate of steam needed to maintain the tank contents at 70°C.
Any flow rate less than this will not be sufficient to heat the feed water from
20°C to 70°C.  This answers question (a) above.

However, if we use just the steady-state rate (T3.18) to heat the water
during the transient, the water in the tank will only approach 70°C asymp-
totically.  We prefer to use a higher steam flow rate than (T3.18), such as

(T3.19)

When the tank contents reach 70°C, we will adjust the steam supply valve to
maintain the steam flow at 2.6 kg/min and adjust the tank outlet valve to
achieve the new steady state.  The choice (T3.19) answers question (b).

T3.2.2 Transient Analysis

During the transient, cold water enters the tank at 8 gal/min (mc = 30.3
kg/min) and water is pumped from the tank at the same rate, so m = mc.  In

mso mc ms+=

∆H 0=

msohso mchc mshs+=

ms mc

hso hc–

hs hso–
-------------------

 
 
 

=

ms 30.3
293 84–

2725 293–
--------------------------- 

  2.6 kg/min= =

ms 3.0 kg/min=
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addition, steam is entering the tank at the value ms selected in (T3.19).  The
general material balance for the transient is therefore

(T3.20)

where M is the amount of water in the tank at any time t.  Integrating (T3.20)
yields

(T3.21)

where Mo = 189.6 kg (50 gallons) is the amount of water in the tank at the
start of the transient (t = 0).  

For this situation, the general energy balance (T2.3) becomes 

(T3.22)

where h is the time-dependent enthalpy of water leaving the tank.  In
(T3.22), we treat the boundary work just as we did in § T3.1: we neglect the
small amount of vapor lost through the vent, assume the expansion of the
water's surface is isobaric, so Wb = –Pd(Mv), and combine this terms with
the internal energy on the lhs.  The result is

(T3.23)

where we have used m = mc.  In writing (T3.23), we have assumed that the
contents of the tank are well mixed, so the enthalpy (h) of the contents has
the same value as the enthalpy of water pumped from the tank.

Note that the term (mchc + mshs) is a constant during the transient; in
fact, it is the steady-state enthalpy given by (T3.16), so we write (T3.23) as

(T3.24)

Expanding the lhs, we have

(T3.25)

dM
dt

--------- ms=

M t( ) Mo mst+=

d Mu( )
dt

----------------- mchc mshs mh– Wb+ +=

d Mh( )
dt

----------------- mchc mshs mh–+=

d Mh( )
dt

----------------- msshss mh–=

M dh
dt
------ h dM

dt
---------+ msshss mh–=
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Using the material balance (T3.20) for dM/dt and collecting terms, we find

(T3.26)

where we have used (T3.14) for (mc + ms).  The time dependence of M is
given by (T3.21); hence,

(T3.27)

This differential equation is to be solved, at any time t, for the enthalpy h of
water leaving the tank.  It can be solved by separating variables,

(T3.28)

We integrate from h = hc at t = 0 to any subsequent time t, and find

(T3.29)

Algebraic rearrangement of (T3.29) allows us to express h explicitly as a
function of t,

(T3.30)

Note the limiting behavior: at t = 0, h = hc, and as t → ∞, h → hss, which is the
steady-state value.  However, this would be a steady-state only with respect
to energy.  Unless valves were adjusted, there would still be a transient wrt
mass; water would continue to accumulate in the tank until it overflowed
through the vent.  In other words, when h reaches hss, dh/dt = 0 in (T3.25),
but dM/dt remains nonzero.

The numerical values for our situation are Mo = 189.6 kg, mc = 30.3 kg/
min, ms = 3 kg/min with hc = 84 kJ/kg, hs = 2725 kJ/kg.  Then (T3.14) gives
mss = 33.3 kg/min and (T3.16) gives hss = 321.9 kJ/kg.  At 70°C water has h =
293 kJ/kg, and solving (T3.30) for t to give this value of h, we find

M dh
dt
------ mss hss h–( )=

Mo mst+( )dh
dt
------ mss hss h–( )=

dh
hss h–( )

---------------------
mssdt

Mo mst+( )
-----------------------------=

hss h–

hss hc–
------------------

 
 
 

ln
mss
ms
---------–

Mo mst+

Mo
------------------------

 
 
 

ln=

h hss
hss hc–

1 mst( ) Mo⁄+( )
mss ms⁄

---------------------------------------------------------–=
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(T3.31)

This is the time required for the transient heating that increases the tempera-
ture of the water from 20°C to 70°C.  At this point the material balance
(T3.21) gives

(T3.32)

as the total amount of water in the tank.  
After 13.2 minutes of heating we would adjust the steam supply valve

and water outlet valve to the new steady state.  If we failed to make these
valve adjustments, the water in the tank would continue to heat until it
reached 76.9°C.  At this point h = hss = 321.9 kJ/kg, and the enthalpy pro-
vided by the steam is just sufficient to bring the incoming cold water to
70°C.  The complete heating curve is shown in Figure T3.4.

t 13.2 min=

M 229 kg=

20

40

60

80

0 10 20 30 40

T 
(°C

)

t (min)

Figure T3.4 Heating curve for the water in the tank shown in Figure
T3.3.  After 13.2 min of steam flow, the water reaches the desired temper-
ature 70°C.  At that point, valves should be adjusted to achieve steady-
state flow; if valve settings are not adjusted, then this curve shows that
the water continues to heat until it reaches 76.9°C.
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Problems

T3.1 During the heating process illustrated by the heating curve in Figure T3.2,
the amount of water in the tank increases from 50 to 60 gallons over 27.5
min.  Over this interval, estimate the flow rate of vapor through the vent.
Is this flow negligible for the analysis performed in § T3.1?

T3.2 Consider the process described in § T3.1 for the situation shown in Figure
T3.1, except let the transient start with the tank completely filled with liq-
uid water.  Thus, when the steam valve is opened, water flows out of the
tank through the vent line.  Assuming the mass flow is a steady state, and
using all other conditions the same as in § T3.1, compute and plot the heat-
ing curve T(t) for the contents of the tank.

T3.3 A one-quart thermos bottle contains 16 oz of liquid water, initially at 75°F.
What volume of ice must be added to the water so that the combined con-
tents reaches 45°F just as the last of the ice melts?  At 1 atm the density of
ice is about 0.92 g/cm3 and the latent heat of melting is 1T3.5 Btu/lbm.   The
process in this problem is a transient, yet the analysis differs from the
example problems discussed in this lecture.  Why?

T3.4 Repeat the solution to the tank problem in § T3.1, but include the effects of
heating the tank walls.  The interior volume of the cylindrical tank is 100
gallons and it has an inside diameter of 2 ft.  The wall thickness is 3/8-in.
The tank is made of a low-alloy steel having a density of 3T2.6 lbm/ft3 and
a specific heat of 0.11 Btu/lbm F.  All other conditions for the process are as
described in § T3.1.

T3.5 A 100-gal vented, insulated, cylindrical tank initially holds 50 gallons of
water at 20°C.  The tank has two inputs: one for cold water (20°C), the other
for warm water (80°C).  (a) Determine the heating curve T(t) for water in
the tank when flows of both inputs are started simultaneously at 15 gpm.
What is the temperature of water in the tank when water starts to overflow
through the vent line?  (b)  Assume the mass flow achieves a steady state
when overflow begins.  Determine the new heating curve from the point of
initial overflow until the energy balance achieves steady state.  

T3.6 A rigid, insulated, 100-gal tank initially contains saturated steam at 10 bar.
To reduce the pressure, the tank is fitted with a shower head for introduc-
ing water as a spray.  Water is fed to the spray head at 20°C and a constant
rate of 0.5 gpm.  Under these conditions, how long must the spray be main-
tained to reduce the pressure to 1 bar?  When the pressure reaches 1 bar,
the spray is stopped; at that point, how much liquid water is in the tank
and how much water vapor is present?  Why is a spray used instead of sim-
ply pumping in a liquid stream?   EXTRA CREDIT:  Determine the pressure
P(t) and cooling curves T(t) for the transient from 10 bar to 1 bar.
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Summary for Part T

Transients are common industrial operations, for even the standard ther-
modynamic problem,

is accomplished via a transient.  However, the real power of thermodynam-
ics lies in its ability to identify energy requirements needed to perform a
change even when the details of the change itself are unknown or unknow-
able.  Most of the problems in this book are of this form.

We perform a transient analysis when we need to describe how quanti-
ties change with time.  In most of those situations thermodynamics does not
provide a sufficient characterization so that a complete determination of
temporal behavior can be computed.  Rates are opposed by resistances to
driving forces, and resistances are not thermodynamic quantities.  Never-
theless, in Lectures T1-T3, we have tried to convince you that thermody-
namics is a necessary component of transient analyses.

process

 System in
 initial state

 System in
 final state


